Copied to
clipboard

G = C3×C42⋊C9order 432 = 24·33

Direct product of C3 and C42⋊C9

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×C42⋊C9, C62.1A4, C122.1C3, (C4×C12)⋊C9, C422(C3×C9), (C4×C12).3C32, C32.2(C42⋊C3), (C2×C6).8(C3×A4), C3.2(C3×C42⋊C3), C22.(C3×C3.A4), (C2×C6).2(C3.A4), SmallGroup(432,101)

Series: Derived Chief Lower central Upper central

C1C42 — C3×C42⋊C9
C1C22C42C4×C12C42⋊C9 — C3×C42⋊C9
C42 — C3×C42⋊C9
C1C32

Generators and relations for C3×C42⋊C9
 G = < a,b,c,d | a3=b4=c4=d9=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc-1, dcd-1=b-1c2 >

3C2
3C4
3C4
3C6
3C6
3C6
3C6
16C9
16C9
16C9
3C2×C4
3C12
3C12
3C12
3C12
3C12
3C12
3C12
3C12
3C3×C6
16C3×C9
3C2×C12
3C2×C12
3C2×C12
3C2×C12
3C3×C12
3C3×C12
4C3.A4
4C3.A4
4C3.A4
3C6×C12
4C3×C3.A4

Smallest permutation representation of C3×C42⋊C9
On 108 points
Generators in S108
(1 20 92)(2 21 93)(3 22 94)(4 23 95)(5 24 96)(6 25 97)(7 26 98)(8 27 99)(9 19 91)(10 43 87)(11 44 88)(12 45 89)(13 37 90)(14 38 82)(15 39 83)(16 40 84)(17 41 85)(18 42 86)(28 106 48)(29 107 49)(30 108 50)(31 100 51)(32 101 52)(33 102 53)(34 103 54)(35 104 46)(36 105 47)(55 79 67)(56 80 68)(57 81 69)(58 73 70)(59 74 71)(60 75 72)(61 76 64)(62 77 65)(63 78 66)
(1 17 52 59)(2 53)(3 10 54 61)(4 11 46 62)(5 47)(6 13 48 55)(7 14 49 56)(8 50)(9 16 51 58)(12 63)(15 57)(18 60)(19 40 31 73)(20 41 32 74)(21 33)(22 43 34 76)(23 44 35 77)(24 36)(25 37 28 79)(26 38 29 80)(27 30)(39 81)(42 75)(45 78)(64 94 87 103)(65 95 88 104)(66 89)(67 97 90 106)(68 98 82 107)(69 83)(70 91 84 100)(71 92 85 101)(72 86)(93 102)(96 105)(99 108)
(1 59 52 17)(2 18 53 60)(4 62 46 11)(5 12 47 63)(7 56 49 14)(8 15 50 57)(20 74 32 41)(21 42 33 75)(23 77 35 44)(24 45 36 78)(26 80 29 38)(27 39 30 81)(65 104 88 95)(66 96 89 105)(68 107 82 98)(69 99 83 108)(71 101 85 92)(72 93 86 102)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,20,92)(2,21,93)(3,22,94)(4,23,95)(5,24,96)(6,25,97)(7,26,98)(8,27,99)(9,19,91)(10,43,87)(11,44,88)(12,45,89)(13,37,90)(14,38,82)(15,39,83)(16,40,84)(17,41,85)(18,42,86)(28,106,48)(29,107,49)(30,108,50)(31,100,51)(32,101,52)(33,102,53)(34,103,54)(35,104,46)(36,105,47)(55,79,67)(56,80,68)(57,81,69)(58,73,70)(59,74,71)(60,75,72)(61,76,64)(62,77,65)(63,78,66), (1,17,52,59)(2,53)(3,10,54,61)(4,11,46,62)(5,47)(6,13,48,55)(7,14,49,56)(8,50)(9,16,51,58)(12,63)(15,57)(18,60)(19,40,31,73)(20,41,32,74)(21,33)(22,43,34,76)(23,44,35,77)(24,36)(25,37,28,79)(26,38,29,80)(27,30)(39,81)(42,75)(45,78)(64,94,87,103)(65,95,88,104)(66,89)(67,97,90,106)(68,98,82,107)(69,83)(70,91,84,100)(71,92,85,101)(72,86)(93,102)(96,105)(99,108), (1,59,52,17)(2,18,53,60)(4,62,46,11)(5,12,47,63)(7,56,49,14)(8,15,50,57)(20,74,32,41)(21,42,33,75)(23,77,35,44)(24,45,36,78)(26,80,29,38)(27,39,30,81)(65,104,88,95)(66,96,89,105)(68,107,82,98)(69,99,83,108)(71,101,85,92)(72,93,86,102), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,20,92)(2,21,93)(3,22,94)(4,23,95)(5,24,96)(6,25,97)(7,26,98)(8,27,99)(9,19,91)(10,43,87)(11,44,88)(12,45,89)(13,37,90)(14,38,82)(15,39,83)(16,40,84)(17,41,85)(18,42,86)(28,106,48)(29,107,49)(30,108,50)(31,100,51)(32,101,52)(33,102,53)(34,103,54)(35,104,46)(36,105,47)(55,79,67)(56,80,68)(57,81,69)(58,73,70)(59,74,71)(60,75,72)(61,76,64)(62,77,65)(63,78,66), (1,17,52,59)(2,53)(3,10,54,61)(4,11,46,62)(5,47)(6,13,48,55)(7,14,49,56)(8,50)(9,16,51,58)(12,63)(15,57)(18,60)(19,40,31,73)(20,41,32,74)(21,33)(22,43,34,76)(23,44,35,77)(24,36)(25,37,28,79)(26,38,29,80)(27,30)(39,81)(42,75)(45,78)(64,94,87,103)(65,95,88,104)(66,89)(67,97,90,106)(68,98,82,107)(69,83)(70,91,84,100)(71,92,85,101)(72,86)(93,102)(96,105)(99,108), (1,59,52,17)(2,18,53,60)(4,62,46,11)(5,12,47,63)(7,56,49,14)(8,15,50,57)(20,74,32,41)(21,42,33,75)(23,77,35,44)(24,45,36,78)(26,80,29,38)(27,39,30,81)(65,104,88,95)(66,96,89,105)(68,107,82,98)(69,99,83,108)(71,101,85,92)(72,93,86,102), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,20,92),(2,21,93),(3,22,94),(4,23,95),(5,24,96),(6,25,97),(7,26,98),(8,27,99),(9,19,91),(10,43,87),(11,44,88),(12,45,89),(13,37,90),(14,38,82),(15,39,83),(16,40,84),(17,41,85),(18,42,86),(28,106,48),(29,107,49),(30,108,50),(31,100,51),(32,101,52),(33,102,53),(34,103,54),(35,104,46),(36,105,47),(55,79,67),(56,80,68),(57,81,69),(58,73,70),(59,74,71),(60,75,72),(61,76,64),(62,77,65),(63,78,66)], [(1,17,52,59),(2,53),(3,10,54,61),(4,11,46,62),(5,47),(6,13,48,55),(7,14,49,56),(8,50),(9,16,51,58),(12,63),(15,57),(18,60),(19,40,31,73),(20,41,32,74),(21,33),(22,43,34,76),(23,44,35,77),(24,36),(25,37,28,79),(26,38,29,80),(27,30),(39,81),(42,75),(45,78),(64,94,87,103),(65,95,88,104),(66,89),(67,97,90,106),(68,98,82,107),(69,83),(70,91,84,100),(71,92,85,101),(72,86),(93,102),(96,105),(99,108)], [(1,59,52,17),(2,18,53,60),(4,62,46,11),(5,12,47,63),(7,56,49,14),(8,15,50,57),(20,74,32,41),(21,42,33,75),(23,77,35,44),(24,45,36,78),(26,80,29,38),(27,39,30,81),(65,104,88,95),(66,96,89,105),(68,107,82,98),(69,99,83,108),(71,101,85,92),(72,93,86,102)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)]])

72 conjugacy classes

class 1  2 3A···3H4A4B4C4D6A···6H9A···9R12A···12AF
order123···344446···69···912···12
size131···133333···316···163···3

72 irreducible representations

dim1111333333
type++
imageC1C3C3C9A4C3.A4C3×A4C42⋊C3C42⋊C9C3×C42⋊C3
kernelC3×C42⋊C9C42⋊C9C122C4×C12C62C2×C6C2×C6C32C3C3
# reps162181624248

Matrix representation of C3×C42⋊C9 in GL7(𝔽37)

26000000
01000000
00100000
00010000
0000100
0000010
0000001
,
1000000
03600000
00360000
0001000
00003100
00000310
00000036
,
1000000
03600000
0010000
00036000
0000600
0000010
00000031
,
10000000
0010000
0001000
02600000
0000010
0000001
0000100

G:=sub<GL(7,GF(37))| [26,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,31,0,0,0,0,0,0,0,31,0,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,31],[10,0,0,0,0,0,0,0,0,0,26,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;

C3×C42⋊C9 in GAP, Magma, Sage, TeX

C_3\times C_4^2\rtimes C_9
% in TeX

G:=Group("C3xC4^2:C9");
// GroupNames label

G:=SmallGroup(432,101);
// by ID

G=gap.SmallGroup(432,101);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,63,1515,360,10399,102,9077,15882]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^9=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations

Export

Subgroup lattice of C3×C42⋊C9 in TeX

׿
×
𝔽